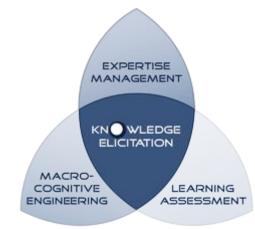
DESIGNING FOR AUTONOMOUS CARGO OPERATIONS

Prepared and Presented by Brian M. Moon Chief Technology Officer Prepared by

James Bona

Senior Technical Fellow



HFE TAG 70 Meeting May 2016

This work was funded by the Office of Naval Research, under contract N00014-12-C-0671. The support of ONR is gratefully acknowledged.

COMPANIES

- Perigean Technologies LLC
 - Woman Owned Small Business since 2007
 - Located in Fredericksburg, VA
- Kutta Technologies
 - Wholly Owned Subsidiary of Sierra Nevada Corporation
 - Headquartered in Phoenix, AZ

MACROCOGNITIVE ENGINEERING

- Designing human-centered systems to enable macrocognitive work
- Usability testing
 - Formative and Summative
- Iterative Design
 - Wireframes
 - Developer guidance

MACRO-COGNITIVE ENGINEERING

KUTTA APPROACH

- Development of mission critical solutions including:
 - UAS ground control stations
 - UAS airborne autonomy subsystems
 - Manned AV avionics systems
- Development of custom, usercentric, visualization tools that represent data in new and innovative ways.

PROJECT

PROJECT

- Office of Naval Research
- Autonomous Aerial Cargo/Utility System (AACUS)

Innovative Naval Prototype

retrofit perception/planning/human interface system that enables autonomous take-off, flight, and landing of a fullscale rotary-wing aircraft to and from austere, possiblyhostile landing zones, in a tactical manner, with minimal human supervision

Paduano, J., Wissler, J., Drozeski, G., Piedmonte, M., Dadkhah, N., Francis, J., Shortlidge, C., et al. (2015). TALOS: An Unmanned Cargo Delivery System for Rotorcraft Landing to Unprepared Sites. American Helicopter Society 71st Annual Forum and Technology Display.

CAPABILITY

- Aurora Flight Sciences
- Tactical Autonomous Aerial LOgistics System (TALOS)
 - Human-Systems Interfaces (HSIs)
 - Planning Systems
 - Perception Systems

HSI CAPABILITY

- Vision
 - Request for resupply and mission monitoring should be enabled through a tablet device requiring minimal training for an operator
 - Route planning should be conducted by AACUS, using human constraints and requirements for input
 - Minimal human supervision should be necessary during mission execution
 - No operator shall have direct control of flight systems

HSI CAPABILITY

- CONOPS Challenges
 - Multiple landing consent modes (i.e., by exception and by consent) should be supported
 - AACUS-enabled aircraft should be able to land in austere environments without human intervention
 - Operators should be able to wave-off or terminate a mission

HUMAN TEAMMATES

- Air Vehicle Operator (AVO)
 - Marine at the Main Operating Base (MOB)
 - Functions include supervisory control of the aircraft at no time does the AVO assume direct control.
 - Responsibilities include providing mission planning data, and launching and monitoring missions
 - Trained specialist
 - HSI = Ground control station (GCS)

HUMAN TEAMMATES

- Field Operator (FO)
 - Marine at Combat OutPost (COP)
 - Functions include initiate an Assault Support Request (ASR), monitor mission progress, provide consent to land – the requirement for which is determined during planning
 - Responsibilities including ensuring that conditions are safe for take-off and initiate take-off
 - No specialized training in autonomous operations
 - HSI = Tablet

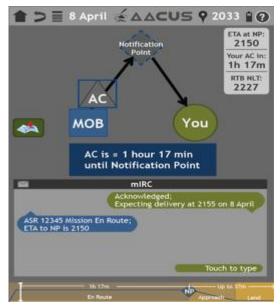
PHASE I

FOCUS

- Cognitive systems engineering
- Emphasis on FO Tablet HSI

Papautsky, E. L., Dominguez, C., Strouse, R., & Moon, B. (2015). Integration of cognitive task analysis and design thinking for autonomous helicopter displays. Journal of Cognitive Engineering and Decision Making. DOI: 10.1177/1555343415602624

Dominguez, C., Strouse, R., Papautsky, L., and Moon, B. (2015). Cognitive Design of an Application Enabling Remote Bases to Receive Unmanned Helicopter Resupply. Journal of Human-Robot Interaction, Vol. 4, No. 2, 2015, Pages 50-60, DOI 10.5898/JHRI.4.2.


ACTIVITIES

- Cognitive task analysis (CTA)
 - [N=22]; Geared toward understanding and supporting the envisioned world of the FO, with participants including helicopter and UAS pilots and instructors and Marines with COP experience
- Design workshops
 - Design thinking and artifact design
- Validation studies
 - [N=13]; Focused on design reviews and an evaluation of the training time to gain working familiarity with the app

PRODUCTS

- Tablet HSI
 - COP FO
 - Working app deployed on iPad

- Tablet HSI
 - MOB AVO
 - High fidelity wireframes

RESULTS

- Flight demonstration of TALOS
- Tablet HSI used by COP FO
- 15 minutes of training
- Observations of use and feedback from the participant demonstrated the functionality, intuitiveness, and easeof-use
- Feedback included expressed desire for improved orientation support with regard to the FO's position, the landing zone (LZ), and the aircraft

PHASE II

FOCUS

- Design and evaluation
- Focus on MOB AVO GCS HSI
- New program goals
 - Portability across platforms
- CONOP Updates
 - Serve multiple requests for any given mission
- New stakeholders
 - Logistics community

ACTIVITIES

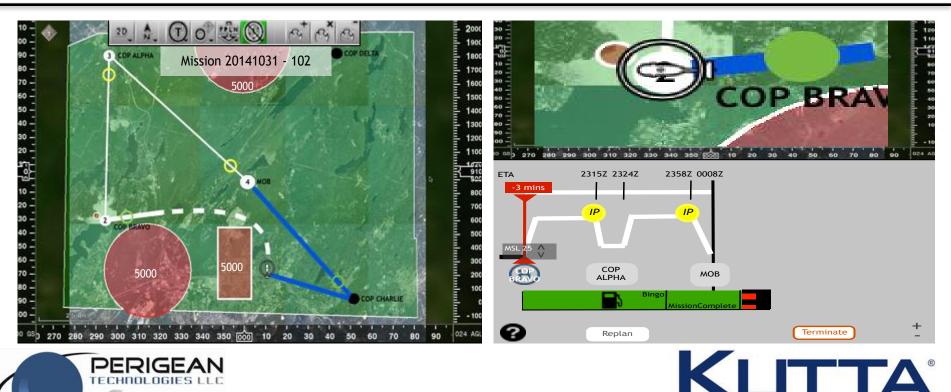
- Design workshops
 - Design thinking and artifact and software re-design
 - Maintained design frameworks
 - MOB GCS reconfigurable panels for central and peripheral information and action
- Design checkouts
 - Initial, N=8
 - Final, N=10

Challenge

TECHNOLOGIES LL

 Deconflict multiple requests

- Design
 - Separate Plan/Execution
 - Planning stage gates



- Challenge
 - Supervising mission progress

- Design
 - Birdseye and horizontal views

- Challenge
 - Modeling intents and actions
- Design
 - Provide known state and intended actions

Technologies for earth and air®

Challenge

TECHNOLOGIES LLI

- Design
- Replanning conflicts with situation awareness
- Conduct replanning from the Execution mode

SOFTWARE: PLAN

PERIGEAN TECHNOLOGIES LLC

SOFTWARE: EXECUTE

PERIGEAN TECHNOLOGIES LLC

RESULTS

- Final Phase II Design Checkout
 - N=~10
 - Marines reported an overall approval of the design
 - Solicited feedback focused on determining improvements necessary to perform a resupply mission – i.e., did we miss anything
 - Biggest requested feature was tactical measures including mandatory waypoints between landing zones and manual entered initial position and departure point into/out of each LZ

INTEGRATING RESULTS

- Waypoint setting
 - Mandatory waypoints on the left are from the origin to the LZ
 - Mandatory waypoints on the right are from the LZ to the destination
 - The IP and DP are for the LZ

Origin PPOS	WinFOHH1 006 20160421 1812Z				stinatio ANUAL
		N001HX			
undatory Waypo	ints	Tactical Measures	Ma	ndatory Waypoints	
	Delta Juliett	TP Type: FIXED	•	Hotel Kilo	
		TP: 12SVC1200114391 MGRS 13	28 ft 🖤	Lima	-
		IP: 12SVC1167214523 MGRS 14	30 ft 💡		
		DP: 12SVC1232014160 MGRS 14	41 11 🔍		

FUTURE WORK

- Continuing Phase 3 work through the end of FY17 with Marine demonstrations in FY18
- Two tracks for development:
 - New functionality
 - Multiple landing zone operations
 - Contingency planning
 - Health monitoring
 - Dynamic re-planning
 - Design checkout feedback
 - Integrated help
 - Mission checklist
 - Integrated unit conversions

THANK YOU FOR YOUR TIME!

Brian Moon 540.429.8126 brian@perigeantechnologies.com

> James Bona (602) 896-1976x224 jbona@kuttatech.com

